2.2 Inverse d'une matrice

Définition 28 (inverse).

Soit $A \in M_{n \times n}(\mathbb{R})$. Alors A est dite inversible s'il existe $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = BA = I_n$.

Remarque

Si A est inversible, alors la matrice B telle que $AB = BA = I_n$ est unique. En effet,

Si A est inversible, sa matrice *inverse* est notée A^{-1} . Si A n'est pas inversible, elle est dite singulière.

Exemples

Formule pour une matrice 2×2

Théorème 17. Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R})$$
. Alors, si $ad - bc \neq 0$, la matrice A est inversible et on a

Exemples

Preuve

Application aux systèmes d'équations linéaires

Théorème 18. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Si A est inversible, alors pour tout $\vec{b} \in \mathbb{R}^n$, l'équation $A\vec{x} = \vec{b}$ admet une unique solution \vec{s} , donnée par $\vec{s} = A^{-1}\vec{b}$.

Exemple

Remarque

Il n'est pas nécessaire que A soit inversible pour que l'équation $A\vec{x} = \vec{b}$ admette une solution.

- Si A est inversible, alors la solution existe et est unique pour tout vecteur $\vec{b} \in \mathbb{R}^n$.
- Si A n'est pas inversible, alors le système peut être consistant ou inconsistant en fonction de \vec{b} .

Théorème 19. Soient $A, B \in M_{n \times n}(\mathbb{R})$ des matrices inversibles. Alors

- 1. A^{-1} est inversible et $(A^{-1})^{-1} = A$.
- 2. AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. A^{T} est inversible et $(A^{T})^{-1} = (A^{-1})^{T}$.

Preuve

Matrices élémentaires

But

Exprimer les opérations élémentaires sous forme matricielle et les utiliser pour trouver un algorithme permettant de calculer l'inverse d'une matrice.

Définition 29 (élémentaire).

Une matrice $E \in M_{n \times n}(\mathbb{R})$ est dite élémentaire si elle s'obtient par une seule opération élémentaire sur les lignes de $I_n \in M_{n \times n}(\mathbb{R})$.

Opérations de type I

Pour $1 \leq i \neq j \leq n$, on note E_{ij} la matrice élémentaire obtenue en échangeant les lignes i et j de I_n .

Opérations de type II

Pour $1 \leq i \leq n$ et $\alpha \in \mathbb{R}^*$, on note $E_i(\alpha)$ la matrice élémentaire obtenue à partir de I_n en multipliant la i^e ligne par α .

Opérations de type III

Pour $1 \leq i \neq j \leq n$ et $\alpha \in \mathbb{R}$, on note $E_{ij}(\alpha)$ la matrice élémentaire obtenue à partir de I_n en ajoutant la i^e ligne multipliée par α à la j^e ligne.

On a ainsi associé une matrice élémentaire à chaque opération élémentaire et on s'aperçoit que les opérations élémentaires effectuées sur une matrice A peuvent s'exprimer par le produit de A avec les matrices élémentaires correspondantes.

Exemple

Théorème 20. Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice. Si E est une matrice élémentaire obtenue de I_m avec une seule opération élémentaire, alors EA est une matrice de $M_{m \times n}(\mathbb{R})$ obtenue à partir de A avec la même opération élémentaire.

Remarque

Théorème 21. Les matrices élémentaires sont inversibles.

Algorithme pour trouver A^{-1}

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice inversible d'inverse A^{-1} . Alors on a $AA^{-1} = A^{-1}A = I_n$.

Affirmation : La forme échelonnée réduite de A est I_n .

Conséquence :	
En utilisant l'algorithme de Gauss-Jordan pour résoudre $A\vec{x_i} = \vec{e_i}$, or	1
obtient	

Remarque:

Exemple

Théorème 22. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Alors A est inversible si et seulement si on peut passer de A à I_n moyennant l'algorithme de Gauss-Jordan.

Dans ce cas, toute suite d'opérations élémentaires transformant A en I_n transformera I_n en A^{-1} .

On peut résumer les résultats obtenus jusqu'à présent dans le théorème suivant :

Théorème 23. Soit $A \in M_{n \times n}(\mathbb{R})$. Alors les propriétés suivantes sont équivalentes :

- 1. La matrice A est inversible
- 2. Pour tout $\vec{b} \in \mathbb{R}^n$, l'équation $A\vec{x} = \vec{b}$ admet une unique solution donnée par $\vec{x} = A^{-1}\vec{b}$
- 3. Les colonnes de la matrice A engendrent \mathbb{R}^n
- 4. La matrice A possède un pivot par ligne
- 5. Les colonnes de A sont linéairement indépendantes
- 6. L'équation homogène $A\vec{x} = \vec{0}$ n'admet que la solution triviale
- 7. On peut passer de A à I_n avec l'algorithme de réduction
- 8. La matrice A est un produit de matrices élémentaires
- 9. L'application linéaire $T_A: \mathbb{R}^n \to \mathbb{R}^n$ associée à A est surjective
- 10. L'application linéaire $T_A: \mathbb{R}^n \to \mathbb{R}^n$ associée à A est injective
- 11. La matrice A^T est inversible

Remarques